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Identifying Heterogeneity in Dynamic Panel Models
with Individual Parameter Contribution Regression

Manuel Arnold, 1,2 Daniel L. Oberski, 3 Andreas M. Brandmaier, 2,4 and Manuel C. Voelkle 1,4

1Humboldt University of Berlin
2Max Planck UCL Centre for Computational Psychiatry and Ageing Research

3Utrecht University
4Max Planck Institute for Human Development

Dynamic panel models are a popular approach to study interrelationships between repeatedly
measured variables. Often, dynamic panel models are specified and estimated within
a structural equation modeling (SEM) framework. An endemic problem threatening the
validity of such models is unmodelled heterogeneity. Recently, individual parameter con-
tribution (IPC) regression was proposed as a flexible method to study heterogeneity in SEM
parameters as a function of observed covariates. In the present paper, we derive how IPCs
can be calculated for general maximum likelihood estimates and evaluate the performance of
IPC regression to estimate group differences in dynamic panel models in discrete and
continuous time. We show that IPC regression can be slightly biased in samples with large
group differences and present a bias correction procedure. IPC regression showed generally
promising results for discrete time models. However, due to highly nonlinear parameter
constraints, caution is indicated when applying IPC regression to continuous time models.

Keywords: Autoregressive cross-lagged model, continuous time modeling, heterogeneity,
structural equation modeling

INTRODUCTION

Dynamic panel models (Hsiao, 2014) are routinely used in
econometrics, psychology, and sociology tomodel the coupling
between several repeatedly measured variables. Building upon
the idea of Granger causality (Granger, 1969), dynamic models

allow answering questions concerned with the direction and
strength of reciprocal relationships. Especially in psychological
research, it is common practice to specify and estimate dynamic
panel models within the structural equation modeling (SEM)
framework (e.g., Allison, Williams, & Moral-Benito, 2017;
Bollen & Brand, 2010; Zyphur, Allison et al., 2019, Zyphur,
Voelkle et al., 2019).

An endemic problem that complicates the analysis of long-
itudinal panel data are systematic differences across individuals
or groups. For instance, individuals may show stable, trait-like
differences in the mean levels; a random shock might have
a long-lasting effect on some persons, while its effect vanishes
quickly for others; or the coupling between processes may
differ across subjects. By overlooking such heterogeneity,
researchers risk drawing incorrect conclusions from their data
(Halaby, 2004).

Heterogeneity can often be explained through covariates
such as demographic variables, biomarkers, or personality
traits. Various approaches have been suggested to identify if
and how covariates are linked to individual or group differences
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in dynamic panel models. A popular way is the use of multi-
level models with random effects (e.g., Singer &Willet, 2003).
For instance, dynamic panel models are often specified with
random intercepts to account for trait-like differences in the
mean level of the observed variables (e.g., Hamaker, Kuiper, &
Grasman, 2015). By regressing random effects on covariates,
multilevel models can also be used to explore correlates and
predictors of heterogeneity. Another popular approach to inves-
tigate heterogeneity are multi-group structural equation models
(MGSEM; Sörbom, 1974) which allow the specification of
panel models with different parameter values across groups.
MGSEMs are particularly useful if the number of groups is
small. However, using MGSEMs to disentangle the effects of
many grouping variables can become tedious as multiple
MGSEMs need to be specified and estimated. Fortunately,
there exist approaches to perform such testing automatically,
which become feasible with large sample sizes: Brandmaier,
von Oertzen, McArdle, and Lindenberger (2013) and
Brandmaier, Prindle, McArdle, and Lindenberger (2016) pro-
posed a combination of MGSEMs and recursive partitioning
methods to recover groups with similar parameter values.
These so-called SEM trees or SEM forests fit a large number
of MGSEMs to identify which grouping variables are impor-
tant. Recently, Brandmaier, Driver, and Voelkle (2018) also
applied these methods to dynamic panel models.

While the above methods are able to detect heterogeneity in
a wide range of situations, they also come with certain draw-
backs. The use of random effects to detect individual or group
differences in dynamic panel models is often hindered by diffi-
culties to specify the random effects for certain types of para-
meters. Whereas including random effects for intercept
parameters is relatively straightforward, specifying random
effects for regression and variance parameters is much more
problematic and usually requires Bayesian methods (e.g.,
Driver & Voelkle, 2018; Schuurman, Ferrer, de Boer-
Sonnenschein, & Hamaker, 2016). A drawback of MGSEM
and MGSEM-based approaches like SEM trees and forests is
that these methods require either categorical grouping variables
or require continuous covariates to be split into meaningful
grouping variables which might obscure the relationship
between differences in a parameter and a continuous covariate.
Furthermore, SEM trees and forests may experience difficulties
when there is a clear set of target parameters of interest. Since
these methods compare the group-wise likelihood, which con-
siders differences in all parameters across all levels of the
covariates jointly, the difference of interest may be masked if
a larger difference is found in other parameters. This masking
effect is well-known in the regression mixture literature
(George et al., 2013) and may occur particularly in the case of
distributionalmisspecification (e.g., Usami,Hayes,&McArdle,
2017). Finally, especially in large data sets, the computational
burden ofmethods like Bayesianmultilevel models, SEM trees,
and SEM forests often constitutes amajor impediment to imple-
ment these approaches in practice.

As an alternative approach to identify and estimate heteroge-
neity in dynamic panel models, we propose the use of individual
parameter contribution (IPC) regression (Oberski, 2013). As we
will discuss in the following, the IPC regression framework
allows modeling SEM parameters as a function of covariates.
Put shortly, IPC regression proceeds in three steps. First, a theory-
driven (confirmatory) SEM is specified and estimated. Second,
individual contributions to all model parameters are calculated
using the case-wise derivative of the log-likelihood function. The
resulting IPCs approximate individual-specific parameter values.
Third, the IPCs are regressed on a set of categorical or continuous
covariates to explain group differences or individual differences
in the parameters. For instance, a researcher could regress the
IPCs to one parameter on individuals’ age to test whether this
parameter is invariant to age differences or to estimate how the
parameter changes as a function of age.

The primary advantages of IPC regression over other
approaches to heterogeneity outlined above are its simplicity,
flexibility, and lowcomputational demand. IPC regression sepa-
rates the estimation of the theory-driven model from the inves-
tigation of individual group differences. This separation is
especially useful if the theory-driven model is complex, that is,
has many observed variables and parameters. Although the
underlying mathematics can be challenging, on the side of the
applied researcher, basicknowledgeof linear regressionanalysis
is sufficient for successfully applying IPC regression in practice.
IPCregressionallows testingevery typeofSEMparameter (e.g.,
means, variances, covariances) for individual or group differ-
enceswithout theneed for specifying randomeffects.Moreover,
the method allows studying the effect of multiple grouping
variables as well as continuous covariates and their interactions.
Furthermore, IPC regression is a computationally lightweight
procedure that can be performed in seconds.

IPCs are not limited to SEMs and can be derived for every
type of maximum likelihood estimate. The contributions are
calculated by linearizing the case-wise derivative of the log-
likelihood function around the maximum likelihood estimates.
The case-wise derivative of the log-likelihood function, also
known as score function, has long been used to investigate the
plausibility of statistical models (e.g., Zeileis, 2005; Zeileis &
Hornik, 2007). Recently, score-based tests became popular in
the exploration of measurement invariance in SEM (Merkle,
Fan, & Zeileis, 2014; Merkle & Zeileis, 2013; Wang, Merkle,
& Zeileis, 2014;Wang, Strobl, Zeileis, &Merkle, 2018). These
score-based tests are used to test measurement invariance with
respect to a continuous or ordinal auxiliary variable. IPC
regression is different to these tests by providing estimates of
how amodel parameter varies as a function of covariates. Other
frequently applied score-based approaches to identify misspe-
cification in SEMs are the modification index (Sörbom, 1989)
and the expected parameter change (Saris, Satorra, & Sörbom,
1987), which both test the validity of certain parameter restric-
tions but do not address the problem of parameter heterogeneity
even though they are closely related (Oberski, 2013).
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As of now, IPC regression has only been evaluated for
a confirmatory factor analysis model (CFA; Brown, 2006). In
a Monte Carlo simulation, Oberski (2013) reported excellent
finite sample performance. We will later show that these
results do not fully generalize to more complex models such
as dynamic panel models. In general, large individual or group
differences in one specific parameter can lead to biased IPC
regression estimates for that specific parameter and also may
lead to biased IPC regression estimates for other parameters.
As a consequence, large differences in one parameter can
increase the risk of a type I error in other constant parameters.
To solve this problem, we propose a bias correction procedure
termed iterated IPC regression that we recommend for
dynamic panel models. The remainder of this article is orga-
nized as follows: first, we will briefly present bivariate
dynamic panel models in discrete and continuous
time. Second, IPC regression is formally introduced. Third,
we evaluate the finite-sample properties of IPC regression for
dynamic panel models in two simulation studies.

AUTOREGRESSIVE AND CROSS-LAGGED
MODELS FOR PANEL DATA

The following section gives an outline of the SEM specifi-
cations for two simple dynamic panel models in discrete
and continuous time that will be used throughout the pre-
sent article. Readers unfamiliar with dynamic panel models
are referred to Biesanz (2012). More details about the
continuous-time models are given by Voelkle, Oud,
Davidov, and Schmidt (2012).

Figure 1 shows a path diagram for a bivariate dynamic
panel model for three waves of data. This structural model
can be described with the following two equations:

xi;t ¼ βxxxi;t�1 þ βxyyi;t�1 þ ui;t (1)

yi;t ¼ βyyyi;t�1 þ βyxxi;t�1 þ vi;t; i ¼ 1; . . . ; n; t ¼ 2; 3 (2)

Here, xi;t and yi;t are the measurements of two different
variables of individual i at time point t. For sake of simpli-
city, we assume that x and y are free of measurement error
and mean centered.

The regression coefficients βxx and βyy are called auto-
regressive parameters and they describe the stability in
each x and y from one measurement occasion to the next.
The regression coefficients βxy and βyx are referred to as
cross-lagged effects and indicate how x influences y and
vice versa. The initial assessments of x and y are treated
as exogenous variables with zero mean and variance ϕxx,
ϕyy respectively, and covariance ϕyx. For the remaining
measurement occasions, u and v denote the dynamic
error terms. The variance and covariance parameters of
the dynamic error terms are symbolized by ψxx, ψyy, and
ψyx respectively.

Equations (3a)–(3c) show the SEM specification of the
model in Figure 1:

yi ¼ Byi þ ζi (3a)

xi;1
yi;1
xi;2
yi;2
xi;3
yi;3

26666664

37777775 ¼

0 0 0 0 0 0
0 0 0 0 0 0
βxx βxy 0 0 0 0
βyx βyy 0 0 0 0
0 0 βxx βxy 0 0
0 0 βyx βyx 0 0

26666664

37777775
xi;1
yi;1
xi;2
yi;2
xi;3
yi;3

26666664

37777775þ

xi;1
yi;1
ui;2
vi;2
ui;3
vi;3

26666664

37777775 (3b)

FIGURE 1 Path diagram of a bivariate autoregressive and cross-lagged panel model for three waves of data.
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Covðζi; ζiÞ ¼ Φ ¼

ϕxx ϕyx 0 0 0 0
ϕyx ϕyy 0 0 0 0
0 0 ψxx ψyx 0 0
0 0 ψyx ψyy 0 0
0 0 0 0 ψxx ψyx
0 0 0 0 ψyx ψyy

26666664

37777775 (3c)

The resulting model-implied covariance matrix of x and y is
given by

Covðyi; yiÞ ¼ ΣðθÞ ¼ I6 � Bð Þ�1Φ I6 � Bð Þ�1
h iT

; (4)

where θ is a vector with the model parameters and I6
denotes an identity matrix of order six.

Although not explicitly stated, the temporally spacing
between assessments plays an important role in the model
as presented in Figure 1. The model treats time as a discrete
variable that indicates the temporally ordering of the assess-
ments and is therefore also referred to as discrete-time
dynamic panel model. As pointed out elsewhere (e.g., Oud,
2007; Oud & Delsing, 2010; Voelkle et al., 2012), treating
time as a discrete variable complicates comparing estimates
from models with different sample schemes and can bias
estimates if assessments are not equally spaced. A solution
to these problems is treating time as a continuous variable
using stochastic differential equation models (Oud & Jansen,
2000; for a recent overview of continuous-time modeling in
the behavioral and related sciences, see van Montfort, Oud, &
Voelkle, 2018). These continuous-time dynamic panel models
allow estimating continuous-time parameters which can be
used to extrapolate to any arbitrary time point.

Following Voelkle et al. (2012), we specify a continuous-
time model by constraining the discrete-time model para-
meters from Figure 1 to functions of underlying continuous-
time parameters A andQ, and the time intervals Δtj. The new
parameter matrix A corresponds to the continuous-time ver-
sion of auto- and cross-lagged effects, the drift parameters,
while Q contains the continuous-time version of dynamic
error term variance parameters, or diffusion parameters:

A ¼ axx axy
ayx ayy

� �
Q ¼ qxx qyx

qyx qyy

� �
(5)

Let Δtj be the time interval between the assessments j and
jþ 1; then the discrete-time regression coefficients are
constrained as a function of A:

bxx bxy
byx byy

� �
¼ expðA � ΔtjÞ; (6)

where exp denotes the matrix exponential function. The
corresponding constraint for the variance of the dynamic
error term is

ψxx ψyx
ψyx ψyy

� �
¼ irow A�1

# expðA# � ΔtjÞ � I4
� �

rowðQÞ
n o

; (7)

where A# :¼ A� I2 þ I2 � A. The operator row puts the
elements of Q into a column vector and the operator irow
stacks the elements of a vector row-wise into a matrix.

The interpretation of the continuous-time model para-
meters can be facilitated by transforming them into the
discrete-time parameters for an arbitrary time interval Δtj.
For example, plugging Δtj ¼ 1 into the estimated drift
parameters on the right-hand side of Equation (8) gives
the discrete-time regression coefficients for a time interval
of one between assessments.

INDIVIDUAL PARAMETER CONTRIBUTION
REGRESSION

In the following, we will show how heterogeneity in the
parameters of dynamic panel models in discrete or contin-
uous time can be identified and explained by IPC regres-
sion. To this end, we first motivate the derivation of IPCs
for general maximum likelihood estimation. Next, we show
how the contributions of SEM parameter estimates can be
obtained. Then, we demonstrate that IPC regression can be
biased in samples with large individual or group differ-
ences. As a solution to this problem, we present a bias
correction procedure.

IPCs to maximum likelihood estimates

Let y1; . . . ; yn be a sample of independently distributed p-
variate random variables with corresponding density func-
tions f ðθ1; y1Þ; . . . ; f ðθn; ynÞ. IPC regression is applicable
in situations where differences between the individual-
specific values of the q-variate parameter vector θi can be
expressed as a function of a vector of covariates zi. For
instance, differences in the parameter values of a two-group
population can be estimated via IPC regression using
a single dummy-coded grouping variable zi as covariate.

For sake of illustration, we will assume that f is
a multivariate normal density. The associated log-
likelihood function for a single individual i is given by

ln Lðθ; yiÞ ¼ � 1

2
yi � μðθÞ½ �`ΣðθÞ�1 yi � μðθÞ½ �

n
þ ln detðΣðθÞÞ½ � þ p lnð2πÞ

o
ð8Þ

with model-implied mean vector μðθÞ and model-implied
covariance matrix ΣðθÞ. In the following, we will use θ to
denote parameter values. True values of the parameters will
be marked by a subscript, for instance θi, and the maximum

likelihood estimate will be denoted by bθ.
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The first and second derivatives of the log-likelihood func-
tion for a given person are important for computing IPCs. The
first-order partial derivative of the individual log-likelihood
function with respect to the parameters is the score function

Sðθ; yiÞ ¼ @ lnLðθ;yiÞ
@θð1Þ

. . . @ lnLðθ;yiÞ
@θðqÞ

h iT
; (9)

where θðjÞ denotes the j-th element of the parameter vector
θ. Evaluation of the score function at specific parameter
values measures to which extent an individual’s log-
likelihood is maximized. Note that the expected values of
the score function at the true parameter values are zero, that
is E Sðθi; yiÞ½ � ¼ 0 holds for all individuals in the sample.
The second-order partial derivative is known as Hessian
matrix and will be denoted by

Hðθ; yiÞ ¼
@2 lnLðθ; yiÞ

@θ @θT
: (10)

The expected value of the negative Hessian matrix evalu-
ated at the true individual specific parameter values

IðθiÞ ¼ E � @2 lnLðθ; yiÞ
@θ @θT

����
θ¼θi

" #
(11)

is called the Fisher information matrix and plays a key role
in determining standard errors and asymptotic sampling
variance of the maximum likelihood estimates.

The maximum likelihood parameter estimate bθ can be
obtained by solving the first-order conditions

Xn
i¼1

Sðbθ; yiÞ ¼ 0; (12)

such that bθ is an extremum. In homogeneous samples,
where θi ¼ θ0 for i ¼ 1; . . . ; n, the resulting parameter esti-

mate bθ is a consistent estimate of true parameter values θ0.

In heterogeneous samples, bθ will typically be close to the
mean of the individuals’ true parameter values θ1; . . . ; θn.

The idea behind the derivation of IPCs is to find the
individual roots of the score function instead of finding the
roots of the sum of all individual score values as shown in
Equation (12). Hypothetically, solving Sðbθi; yiÞ ¼ 0 for
every individual in the sample would yield individual para-

meter estimates bθ1; . . . ;bθn. Unfortunately, for many prob-
ability distribution such as the normal distribution, the

system of equations Sðbθ; yiÞ ¼ 0 does not have a unique
solution for a single data point. However, we can approx-
imate the individual scores by linearizing the mean of all

scores around the maximum likelihood estimate and then
disaggregate the resulting expression:

1

n

Xn
i¼1

Sðθ; yiÞ �
1

n

Xn
i¼1

Sðbθ; yiÞ
þ 1

n

Xn
i¼1

Hðbθ; yiÞ θ� bθ� �
(13)

Without changing the right-hand side of Equation (13), the
Hessian matrix can be replaced by the estimated negative
Fisher information matrix.

1
n

Xn
i¼1

Sðbθ; yiÞ � IðbθÞ θ� bθ� �
(14)

In geometric terms, Equation (14) approximates the mean
of scores with a tangent line at the maximum likelihood
estimate. Now, we disaggregate this tangent into n indivi-
dual tangents by replacing the mean of scores evaluated at
the maximum likelihood estimate with the individual score
values evaluated at the maximum likelihood estimate:

Sðbθ; yiÞ � IðbθÞ θ� bθ� �
(15)

Finally, setting Equation (15) to zero and solving for θ
yields a q-variate vector of individual’s i contributions to
the parameter estimates:

0 ¼ Sðbθ; yiÞ � IðbθÞ IPCðbθ; yiÞ � bθh i
IPCðbθ; yiÞ ¼ bθþ IðbθÞ�1Sðbθ; yiÞ (16)

The interpretation or meaning of the IPCs, and all averages
or statistics based on them, follows from the interpretation
of the maximum likelihood estimates bθ. This property is
particularly important for dynamic panel models. The IPCs
of autoregressive or cross-lagged parameter will only
approximate the individual within-person relationship if
the dynamic model separates the within-person process
from stable between-person differences (Hamaker et al.,
2015).

IPCs to SEM parameter estimates

Instead of the sum of individual log-likelihoods in Equation
(8), it is common to use the aggregated log-likelihood
function (also called fitting function) in SEM (Voelkle,
Oud, von Oertzen, & Lindenberger, 2012). The maximum
likelihood fitting function for multivariate normally distrib-
uted variables is
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F y; S; μðθÞ;ΣðθÞð Þ ¼ y� μðθÞ½ �`ΣðθÞ�1 y� μðθÞ½ �

þ tr SΣðθÞ�1
h i

� ln jSΣðθÞ�1j
h i

� p; ð17Þ

with sample means �y and sample covariance matrix S
(Yuan & Bentler, 2007). Optimizing either the sum of
individual log-likelihood functions or an aggregated fitting
function yields equivalent parameter estimates (Bollen,
1989).

Using the aggregated fitting function, IPCs to SEM
parameter estimates are a function of the individual’s data
and two matrices Δ and V that are provided by most
standard SEM software packages. The first matrix Δ is the
following Jacobian matrix

Δ ¼ @½μðθÞ; σðθÞ�T
@θ

; (18)

where σðθÞ denotes the half-vectorized model-implied cov-
ariance matrix. Δ indicates the sensitivity of the model-
implied mean vector and covariance matrix to changes in
the parameters. The second matrix is the weight matrix V
which depends on the chosen estimator (e.g., Savalei,
2014). In SEMs estimated with normal theory maximum
likelihood, the corresponding weight matrix is

V ¼ ΣðθÞ�1 0

0 1
2D

T
p ΣðθÞ�1 � ΣðθÞ�1
h i

Dp

" #
; (19)

with duplication matrix Dp (Magnus & Neudecker, 2019).
Sample estimates of Δ and V can be obtained by replacing

θ with bθ.
Following Satorra (1989) and Neudecker and Satorra

(1991), the Fisher information matrix can be expressed as
IðθÞ ¼ ΔTVΔ and a partial derivative of the fitting function
is given by

� 1

2

@F �y;S; μðθÞ;ΣðθÞð Þ
@θ

¼ ΔTV
�y
s

� �
� μðθÞ

σðθÞ
� �	 


: (20)

Individual score values can be obtained by replacing the
aggregated mean vector and covariance matrix in Equation
(20) by the individual contributions to these sample
moments. To this end, we define n vectors

di :¼
yi

vech yi � �y½ � yi � �y½ �T
� �" #

(21)

(Satorra, 1992), where the operator vech half-vectorizes
a symmetric matrix. Note that the averaged individual con-
tributions to the sample moments are identical to the

observed sample moments, that is 1
n

Pn
i¼1 di ¼ �y s½ �T.1

Thus, analogous to Equation (16), the individual contribu-
tions to SEM parameter estimates can be estimated by

IPCðbθ; yiÞ ¼ bθþ bΔTbVbΔ� ��1bΔTbV di � μðbθÞ
σðbθÞ
� �	 


: (22)

The above definition of the IPCs should replace that given
by Oberski (2013), which yields incorrect means of the
IPCs to factor loading and regression parameters.

Predicting heterogeneity in panel models with IPC
regression

The IPCs of a single individual are usually plagued by
random fluctuation and will most likely be poor estimates
of the true individual parameter values. However, studying
the IPCs of groups of individuals or jointly modeling the
IPCs of the whole sample can average out this noise. One
obvious method for revealing meaningful differences in the
parameters is linear regression estimated by ordinary least
squares. Regressing the IPCs on a set of additional covari-
ates z allows to test and estimate if and how individual
parameter values vary as a function of z.

For instance, we could investigate via IPC regression
whether the cross-lagged estimated effect bβyx from x on y in
the model shown in Figure 1 differs between women and

men. To this end, the IPCs to bβyx are regressed on a dummy
variable z representing gender. Using women as a baseline
group, the following IPC regression equation is estimated

IPCi;βyx ¼ bγ0 þbγ1zi þ νi; (23)

where νi is a random residual with mean zero. In the above
equation, the IPC regression intercept bγ0 is the estimated
value of βyx for women and bγ1 denotes the estimated dif-
ference between women and men in βyx. In other words, the
IPC regression slope estimate bγ1 is a measure of hetero-

geneity in the cross-lagged effect bβyx with respect to the
covariate gender. As in standard regression analysis, a t-test
could be applied to test bγ1, that is, to infer whether the
estimated subgroup difference between women and men inbβyx is significantly different from zero. In this setup,
Oberski (2013) showed that bγ1 and its Wald statistic are
equivalent to the robust expected parameter change and
robust modification index familiar from MGSEM (Satorra,
1989). Based on the size of the estimate and the test result,
an informed decision can be made to modify the original
model or not. An obvious choice of modification would be
to use gender as a grouping variable in an MGSEM. The
partial effects of several covariates on the parameters can
be investigated using multiple linear regression analysis. To

1The biased estimate of the sample covariance is used.
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investigate parameter heterogeneity in the complete model
presented in Figure 1, an IPC regression equation needs to
be estimated for each of the 10 model parameters:

IPCi;βxx ¼ bγTβxxzi þ νi;βxx (24a)

IPCi;βyx ¼ bγTβyxzi þ νi;βyx (24b)

..

.

IPCi;ψyy
¼ bγTψyy

zi þ νi;ψyy
(24j)

In Equations (24a)–(24j), the IPC regression estimates bγ
indicate the estimated effects from multiple covariates z on
a certain parameter estimate.

Due to its flexibility and computational efficiency, the
linear regression framework offers researchers many possi-
bilities to investigate heterogeneity by means of IPC regres-
sion. The interplay of the covariates could be studied by
adding interactions to Equations (24a)–(24j). Furthermore,
higher-order polynomial terms, such as quadratic or cubic
terms can be easily specified to test for nonlinear relation-
ships. If the number of covariates is large, regularization
techniques like lasso (Tibshirani, 1996) could be used to aid
the selection of important covariates. Finally, latent vari-
ables could be included by replacing the regression equa-
tions above with SEMs.

Bias and inconsistency

IPC regression estimates of individual or group differences
can be slightly inaccurate under certain circumstances. As
shown above, IPC regression estimates are functions of
maximum likelihood estimates and observed data. If an
IPC regression estimate depends on a maximum likelihood
estimate of a parameter that differs across individuals or
groups, the IPC regression estimate will be inaccurate. As
a rule of thumb, the inaccurateness increases with the
amount of individual or group differences in the sample.

In the next paragraphs, we will demonstrate some prop-
erties of IPC regression estimates with the help of the
exponential distribution. We chose the exponential distribu-
tion for the sake of clarity since it only has a single para-
meter. We will show that IPC regression estimates do not
always correspond to individual- or group-specific maxi-
mum likelihood estimates, that is, with parameters esti-
mated using homogeneous segments of the sample.
Further, we will show that IPC regression estimates are
not guaranteed to converge to the true individual- or group-
specific parameter values and, as a result, can be
inconsistent.

Consider the exponential distribution with density
f ðλ; yÞ ¼ λe�λy, y � 0, and rate parameter λ > 0. We

assume that n individuals have been sampled in equal
shares from a two-group population with different group-
specific rate parameters λ1 and λ2. The maximum likeli-
hood estimate of λ for the whole sample is the reciprocal of

the sample mean bλ ¼ �y�1 ¼ n=
Pn

i¼1 yi. To recover the

group differences in bλ, we regress the IPCs to bλ on
a dummy variable z that is zero in the first group and one
in the second group:

IPCi;λ ¼ bγ0 þbγ1zi þ νi (25)

Next, we express the IPC regression estimates bγ0 and bγ1 as
a function of group-specific maximum likelihood estimatesbλ1 and bλ2 that are estimated separately in homogeneous
subsamples. Intermediate steps can be found in the
Appendix.

bγ0 ¼ 4bλ21bλ2bλ1 þ bλ2� �2 (26)

bγ1 ¼ 4λ1λ2 bλ2 � bλ1� �
bλ1 þ bλ2� �2 (27)

Analogously to the bias of an estimator, which is the
difference between an estimator’s expected value and the
true value of the parameter, we may define the bias of an
IPC regression estimate as the difference between an IPC
regression estimate and the group-specific maximum like-
lihood estimate. Taking the probability limits of the result-
ing biases is trivial (see White, 1984) and allows us to
determine whether the IPC regression estimates are
consistent.

bγ0 � bλ1 ¼ 2bλ21bλ2 � bλ31 � bλ1bλ22bλ1 þ bλ2� �2 �!P 2λ21λ2 � λ31 � λ1λ
2
2

λ1 þ λ2ð Þ2 �0 (28)

bγ1 � bλ2 � bλ1� �
¼

bλ1 � bλ2� �3
bλ1 þ bλ2� �2 �!P λ1 � λ2ð Þ3

λ1 þ λ2ð Þ2 �0 (29)

It follows from Equations (28) and (29) that the IPC regres-
sion estimates bγ0 and bγ1 are systematically different from the
group-specific maximum likelihood estimates. As this bias is
unaffected by the sample size, the IPC regression estimates
are also inconsistent. For instance, consider a sample drawn
in equal shares with λ1 ¼ 0:5 and λ2 ¼ 1:5. These parameter
values imply that bγ0 and bγ1 converge to 0.375 and 0.75,
respectively. Not only would IPC regression underestimate
both group-specific parameter values (first group: 0.375 vs.
0.5, second group: 0:375þ 0:75 ¼ 1:125 vs. 1.5) but also
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underestimate the difference between both groups (0.75
vs. 1). In homogeneous samples, however, where λ1 ¼ λ2,

the IPC regression estimates are consistent as bγ0 � bλ1 andbγ1 � ðbλ2 � bλ1Þ converge in probability to zero.
Deriving the asymptotic bias for more complex models

such as SEMs is challenging. However, later in the manu-
script, we will demonstrate by means of Monte Carlo
simulations that the results stated above generalize to
dynamic panel models.

Iterative IPC regression: Bias correction procedure

To resolve the problems discussed in the previous paragraph,
we propose an iterative algorithm similar to Fisher’s scoring
(e.g., Demidenko, 2013) to correct the bias of IPC regres-
sion. As discussed before, IPC regression estimates are
biased if they depend on maximum likelihood estimates of
parameters that differ across individuals or groups. This bias
can be removed by replacing the pooled maximum likeli-
hood estimates based on the entire sample with individual-
or group-specific parameter estimates. However, instead of
estimating these parameters separately, which is usually not
possible for single individuals, we iteratively predict the
individual- or group-specific parameters through IPC regres-
sion and re-estimate the IPC regression estimates.

Our proposed bias correction procedure, which we call
iterative IPC regression, proceeds in the following way:
First, an SEM is estimated and IPC regression is performed
as described above. Second, the resulting IPC regression
estimates are then used to predict a specific value for SEM
parameter j of individual i:

eθi;j ¼ zTi eγj; i ¼ 1 . . . ; n; j ¼ 1 . . . ; q (30)

Third, these individual-specific parameter values are used
to-recalculate the IPCs of each individual.

gIPCi ¼ eθi þ IðeθiÞ�1Sðeθi; yiÞ; i ¼ 1 . . . ; n (31)

Fourth, IPC regression estimates are re-estimated using the
re-calculated IPCs for that specific parameter.

eγj ¼ Xn
i¼1

ziz
T
i

 !�1Xn
i¼1

zTi gIPCi;j; j ¼ 1 . . . ; q (32)

Re-estimating the IPC regression estimates once will
reduce but not eliminate the bias. However, by iterating
over the steps shown in Equations (30)–(32), the IPC
regression estimates will approach unbiased and consistent
estimates of individual- or group-specific differences in
maximum likelihood estimates. A graphical demonstration
of the bias correction procedure is presented in Figure 2.

The iterated IPC algorithm converges if the change in either
the IPC regression estimates or in the log-likelihood becomes
negligibly small. Unfortunately, the algorithm does not always
converge. Especially, if the true individual- or group-specific
value of a parameter lies close to (or at) the border of its
parameter space, the algorithm might go awry. However,
given strong heterogeneity in a sample, we observed across
various models that the iterations often yield substantial
improvement over the initial IPC regression estimates before
breaking down. Therefore, the iteration with the largest log-
likelihood might be preferred to the initial results.

We would like to note two more observations on the bias
correction procedure. First, IPC regression estimates are
unbiased in homogeneous samples and therefore cannot be
further improved by updating the IPCs. If iterated IPC regres-
sion is used in a homogeneous sample, the algorithm will
overfit the estimates to random fluctuation of the data. In this
case, the resulting estimates can be marginally worse than the
initial estimates, but the difference will be inconsequential for
most practical purposes. Second, updating the IPCs comes at
the cost of additional computational demands. In our experi-
ence, however, the algorithm usually converges quickly within
few iterations. Even for samples with a few thousand indivi-
duals and models with more than 30 parameters, updating the
IPCs took less than a minute with a standard desktop PC.

Software implementation

IPC regression is implemented as a package for the statis-
tical programming language R (R Core Team, 2019),
termed ipcr. The ipcr package makes it easy for researchers
to study heterogeneity in the parameter estimates of an
SEM fitted with the OpenMx package (Neale et al., 2015).
The ipcr package performs “vanilla”, IPC regression as
introduced by Oberski (2013) as well as iterated IPC
regression. More information of how the ipcr package can
be installed and used can be found under https://github.
com/manuelarnold/ipcr/.

MONTE CARLO SIMULATIONS

To evaluate the performance of vanilla and iterated IPC
regression to detect and estimate heterogeneity in dynamic
panel models in discrete and continuous time we conducted
the following two Monte Carlo simulations. The first simu-
lation aims to substantiate our theoretical considerations
regarding the bias for bivariate dynamic panel models.
The second simulation investigates whether IPC regression
provides valid inferences and compares the power of the
method with MGSEM. Additional simulations to evaluate
the performance of IPC regression for non-normally dis-
tributed data, more periods, and a comparison to
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a multilevel model, an MGSEM, and an SEM tree are
provided as Online Supplemental Material.

Simulation I: Demonstration of the bias

In the following simulation studies, we used the discrete-
time dynamic panel model depicted in Figure 1 with five
measurement waves as a simulation model. The data
were sampled from a multivariate normal distribution
with two distinct sets of parameter values. 125 observa-
tions were generated per group, resulting in a pooled
sample with 250 observations in total. A discrete-time
and a continuous-time dynamic panel model were fitted
to the same data, ignoring the group differences. Then,
we used vanilla and iterated IPC regression with
a dummy variable to recover the group differences in
the parameter values of the dynamic panel models.
Iterated IPC regression was performed by re-estimating
the IPC regression parameters until the change in all
parameters was smaller than 0.0001. We repeated this
procedure 10,000 times.

The discrete-time population parameter values used to
generate the data are shown in the upper half of Table 1,
separated for both groups. For easy reference, we transformed

these parameter values into continuous time and printed them
in the lower half of the table. As clearly apparent fromTable 1,
group 1 and 2 differ substantively. The first group is charac-
terized by strong autoregressive coefficients and no cross-
lagged effects, whereas the second group exhibits substantial
cross-lagged effects and smaller autoregressive coefficients.
In addition, the variance of x and y was chosen twice as high
for the second group as compared to the first.

We will first discuss the results for the discrete-time
dynamic panel model. As expected from the theoretical exam-
ple, both IPC regression methods provided accurate estimates
of heterogeneity in the initial variance and covariance para-
meters. Further, IPC regression estimates for regression coeffi-
cients and dynamic error term variance parameters were
slightly distorted. Figure 3 depicts boxplots visualizing the
bias of the IPC methods for regression coefficients (top
graph) and dynamic error term variance parameters (lower
graph). The estimates of vanilla IPC regression are printed in
red and estimates after updating the IPCs are depicted in blue.
Boxplots whose median lines lie close to the dotted black line
indicate that the corresponding IPC regression estimates were
approximately unbiased. Using the vanilla method, the inter-
cepts (marked with the subscript 0) of the IPC regression
equations were more biased than the slopes (subscript 1). Our

FIGURE 2 Demonstration of iterated IPC regression. 1000 individuals were sampled in equal shares from a two-group exponential distribution with
group-specific rate parameters λ1 ¼ 0:5 and λ2 ¼ 1:5. Iterated IPC regression with a dummy variable indicating grouping was used to estimate the group
difference in the rate parameter. On the left side, initial and re-estimated IPC regression estimates are shown. Red dots are estimates of λ1 and blue dots are
estimates of the difference λ2 � λ1. Dashed lines mark the corresponding maximum likelihood estimates. Clearly, the initial IPC regression estimates are
biased. After just two iterations, however, the iterated IPC regression estimates approach the corresponding maximum likelihood estimates. The log-
likelihood function is shown on the right side. The iterative reduction of the bias in the IPC regression estimates leads to an increase of the log-likelihood.
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updated IPC method erased the bias in the intercepts and
provided accurate estimates for all types of model parameters.
Averaged over all parameters, the root mean squared error of
iterated IPC regression (RMSE = 0.089) was slightly smaller
than the one of the vanilla procedure (RMSE = 0.094).

The performance of the IPC regression methods for the
continuous-time dynamic model was similar to the find-
ings for the discrete-time parameters above. The estimates
for the initial variance and covariance parameters pro-
vided by both IPC regression methods were near the true
values, whereas estimates for the remaining model para-
meters were biased. Figure 4 presents the bias in the IPC
regression estimates for drift and diffusion parameters.
Overall, the IPC regression estimates showed more varia-
bility for the continuous-time parameters than for the
discrete-time parameters. As for the discrete-time model,
vanilla IPC regression exhibited a slight bias. Re-
estimating the IPCs with our correction procedure reduced
this bias at the cost of increased variability of the IPC
regression estimates. Moreover, the iterated IPC algorithm
converged only in 53.78% of the trials and fell back to the
starting values or an intermediate solution in the remain-
ing trials. Nevertheless, in terms of the RMSE averaged
over all parameters, iterated IPC regression (RMSE =
0.168) slightly outperformed vanilla IPC regression
(RMSE = 0.174).

TABLE 1
Group-specific Population Parameter Values for the Dynamic Panel

Models in Discrete and Continuous Time

Time θ Group 1 Group 2 θ Group 1 Group 2

Discrete βxx 0.700 0.450 ϕyx 0.300 1.000

βyx 0.000 0.300 ϕyy 1.000 2.000

βxy 0.000 0.300 ψxx 0.510 1.145

βyy 0.700 0.450 ψyx 0.153 0.168

ϕxx 1.000 2.000 ψyy 0.510 1.145

Continuous axx – 0.357 – 1.092 ϕyx 0.300 1.000

ayx 0.000 0.805 ϕyy 1.000 2.000

axy 0.000 0.805 qxx 0.713 2.760
ayy – 0.357 – 1.092 qyx 0.214 – 1.034
ϕxx 1.000 2.000 qyy 0.713 2.760
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FIGURE 3 Boxplots of the bias of the IPC regression estimates for the discrete-time dynamic panel model. Red: vanilla IPC regression, blue: iterated IPC
regression.
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Simulation II: Statistical power and false positive rate

In the second simulation, we investigated the power of IPC
regression to detect a difference in a parameter value and
the false positive rate in case of homogeneous parameters.
We generated multivariate normal data from bivariate
dynamic panel models with five measurement occasions.
We specified the population models in a way that only the
cross-lagged effects from the variable x on y differed
slightly between two groups. All other parameters were
equal. In contrast to the previous simulation, we used
different population models for the discrete- and continu-
ous-time models. The corresponding parameter values for
both population models (shown in Table 2) resulted in
similar but not identical population covariance matrices.
After a data set was generated, a pooled dynamic panel
model was fitted, and parameter heterogeneity was tested
with IPC regression (vanilla and iterated) using a dummy
variable. We used the same convergence criterion for iter-
ated IPC regression as in the previous simulation. We
investigated power and false positive rate for group sizes
of 100, 125, 150, 175, and 200 resulting in total sizes of

200, 250, 300, 350, and 400. For each sample size, we
replicated this process 10,000 times.

As a reference, we compared the power of the IPC
regression methods to the power of MGSEM. Although
MGSEM lacks the flexibility and computational simplicity
of IPC regression, in simple (single-variable) group com-
parisons with correctly specified models, standard max-
imum-likelihood theory suggests it should provide the
uniformly most powerful test. MGSEM therefore presents
a good gold standard reference for these cases. The
MGSEMs were specified by letting only the cross-lagged
effects of x on y differ between groups. We computed the
power of the MGSEMs by conducting likelihood ratio
tests that compared the fit of the MGSEMs to the fit of
the pooled models.

Figure 5 shows the power of IPC regression for the dis-
crete-time model. Depicted is the rejection rate of the null
hypothesis that the cross-lagged effects from x on y are equal
in both groups, plotted against the number of individuals for
a significance level of 5%. Red lines refer to the power of
vanilla IPC regression, blue lines to iterated IPC regression,
and black lines mark the power of MGSEM. For the discrete-
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FIGURE 4 Boxplots of the bias of the IPC regression estimates for the continuous-time dynamic panel model. Red: vanilla IPC regression, blue: iterated
IPC regression.
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time model, the IPC regression methods appeared to be on
average 3.97 percentage points (range: [3.03, 5.30]) less
powerful than MGSEM. Iterated IPC regression achieved
a marginally larger power with a difference of 0.66 percentage
points (range: [0.35, 0.94]). The power for the continuous-
time model is presented in Figure 6. We found that the
difference in power between the IPC regression methods
and MGSEM were substantively larger for the continuous-
time model than for the discrete-time model. On average, the
power of the IPC regression was 20.68 percentage points
(range: [14.25, 27.47]) smaller than the power of MGSEM.
In addition, the power of IPC regression appeared to grow
more slowly as a function of sample size. Again, iterated IPC
appeared slightly more powerful than vanilla IPC regression
(average difference: 0.28, range: [0.17, 0.44]).

Besides power, the false detection rate of the IPC regres-
sion methods is of great importance for drawing correct

conclusions from the data. We assessed the type I error rate
for population parameters that are identical in the two groups
for a significance level of 5%. We summarized the results by
averaging the type I error rate for the three parameter types in
the models (initial variance, regression coefficient/drift,
dynamic error term variance/diffusion). Table 3 shows the
proportions of type I errors for the discrete-time model and
Table 4 for the continuous-time model. In line with simulation
results from Oberski (2013), the type I error rates were close
to 5% for most parameters. Iterated IPC regression committed
slightly more type I errors for regression and drift parameters.
These findings imply that the standard errors of iterated IPC
regression for regression/drift parameters were slightly too
small and could explain why iterated IPC regression appeared
marginally more powerful to detect heterogeneity.

In contrast to Simulation I, therewas not a single case of non-
convergence of the iterated IPC regression algorithm in
Simulation II. This finding suggests that the convergence pro-
blems for the continuous-time dynamic panel model were
mainly driven by the larger group differences used in the pre-
vious simulation.

DISCUSSION

The present study investigated the performance of IPC
regression (Oberski, 2013) to identify and estimate para-
meter heterogeneity in dynamic panel models. Overall, we
found that IPC regression is a promising method to identify
and estimate individual or group differences. In comparison
to other contemporary approaches formally addressing het-
erogeneity with covariates, IPC regression offers a general

TABLE 2
Population Parameter Values for the Dynamic Panel Models Used in

Simulation II.

Discrete time Continuous time

θ Value θ Value θ Value θ Value

βxx 0.500 ϕyx 0.300 axx – 0.780 ϕyx 0.300

βyx 0.200/0.300 ϕyy 1.000 ayx 0.424/0.546 ϕyy 0.300

βxy 0.200 ψxx 0.650 axy 0.424 qxx 1.306

βyy 0.500 ψyx 0.013 ayy – 0.780 qyx – 0.379

ϕxx 1.000 ψyy 0.650 ϕxx 1.000 qyy 1.306

Note. That the cross-lagged effects βyx and ayx differ between the two
groups.
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FIGURE 5 Power to detect that the population group difference in the cross-lagged effect βyx of the discrete-time model is non-zero. Black crosses:
MGSEM, red squares: vanilla IPC regression, blue pluses: iterated IPC regression.
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framework that encompasses all types of SEMs and covari-
ates and makes identifying and explaining individual dif-
ferences as simple, flexible, and fast as linear regression.

IPC regression was evaluated in terms of bias in the
recovery of true group differences, the power to detect
parameter heterogeneity, and the type I error rate for
homogeneous parameters. By means of a theoretical

example and through Monte Carlo simulations, we
demonstrated that original, “vanilla”, IPC regression
estimates can be slightly biased due to large differences
in regression parameters. Additional heterogeneity in
variance parameters may amplify this bias. As a rule
of thumb, the bias seems to affect mainly parameters
connected to endogenous variables like regression and
residual variance parameters, whereas the IPC regres-
sion estimates for parameters associated with exogenous
variables such as the initial variance parameters remain
comparatively unbiased. Hence, IPC regression may
perform worse for SEMs with many directed paths
such as dynamic panel models than for models with
few directed paths such as CFA models. This argument
would also explain why Oberski (2013) found nearly
unbiased estimates of group differences in a CFA
model.

To correct the bias in vanilla IPC regression, we
introduced a novel updating procedure, which we
termed iterated IPC regression. Iterated IPC regression
produced approximately unbiased estimates of group
differences in the parameters of a discrete-time dynamic
panel model and outperformed vanilla IPC regression in
terms of the RMSE. For the continuous-time dynamic
panel model, however, iterated IPC regression corrected
the bias but at the cost of adding additional variability
to the estimates. Nevertheless, updating the IPCs still
improved the estimates on average as indicated by
a smaller RMSE.

In situations in which MGSEM could be applied as an
alternative to IPC regression, we compared the power of IPC
regression to that of MGSEM, which theory suggests is
uniformly most-powerful in these cases. IPC regression
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FIGURE 6 Power to detect that the population group difference in the drift parameter ayx of the continuous-time model is non-zero. Black crosses:
MGSEM, red squares: vanilla IPC regression, blue pluses: iterated IPC regression.

TABLE 3
Proportions of Type I Errors for the Parameters Estimates of the

Discrete-time Dynamic Panel Model

Vanilla IPC Iterated IPC

Group size β ϕ ψ β ϕ ψ

100 5.483 5.047 5.353 6.097 5.047 5.437
125 5.167 5.163 5.133 5.663 5.163 5.277
150 5.037 5.143 5.010 5.500 5.143 5.207
175 5.173 4.940 5.150 5.600 4.940 5.090
200 5.093 4.900 4.850 5.443 4.900 4.983

TABLE 4
Proportions of Type I Errors for the Parameters Estimates of the

Continuous-time Dynamic Panel Model

Vanilla IPC Iterated IPC

Group size a ϕ q a ϕ q

100 5.333 5.083 5.353 5.250 5.083 4.477
125 5.103 5.007 5.263 5.183 5.007 4.620
150 5.207 5.090 5.143 5.247 5.090 4.657
175 5.077 5.193 4.993 5.157 5.193 4.580
200 4.810 5.207 4.803 4.920 5.207 4.463
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yielded power only slightly below that of this theoretically
optimal method to detect group differences in the cross-
lagged effect of a discrete-time dynamic panel model. For
the continuous-time model, however, IPC regression was no
more than half as powerful as MGSEM. It should be noted
that MGSEM cannot be applied to all scenarios allowed by
IPC regression; for example, MGSEM does not investigate
partial effects of multiple covariates of model parameters. In
agreement with earlier theoretical findings, both IPC regres-
sion methods did control the type I error rate accurately.

In summary, our findings demonstrate that (iterated) IPC
regression is a useful tool to study heterogeneity in dis-
crete-time dynamic panel model. For continuous-time
dynamic panel models, however, our findings were mixed:
high variance caused by the bias correction procedure and
a small power make (iterated) IPC regression unappealing
especially in smaller data sets. We believe that these pro-
blems are caused by non-linear parameter constraints and
high correlation between parameter estimates of the con-
tinuous-time dynamic panel model. Considering these dif-
ficulties, IPC regression seems more appropriate for models
that can be parameterized without non-linear constraints
such as the discrete-time dynamic panel model or other
contemporaneous models for longitudinal data such as
latent growth curve models (Bollen & Curran, 2006) or
latent change score models (McArdle, 2001), if these mod-
els are applicable.

Although IPC regression is a general, easy to use,
and flexible approach to detect parameter heterogeneity,
we want to stress that it is not always the most appro-
priate one. Depending on a study’s objective, other
methods for addressing heterogeneity should be pre-
ferred to IPC regression. For example, multilevel mod-
els are like an obvious choice in situations where it is
sufficient to allow for varying parameter values between
individuals and there is no interest in explaining these
differences. In contrast, if a study aims to test differ-
ences between few known groups in the data (e.g., in
variance parameters), MGSEM will often be the better
choice. If a study’s goal is to determine homogeneous
groups in the data with help of additionally observed
covariates, partitioning methods like SEM trees or for-
ests often are better suited for the task, in particular if
computation time is not an issue.

In the following, we will briefly touch upon some lim-
itations of IPC regression that researchers should consider.
First, the usefulness of IPC regression depends on the
covariates available. If none of the additional covariates is
related to individual or group differences in the parameters,
IPC regression will fail to detect the source of heterogene-
ity. In cases of unobserved group membership, researchers
may want to resort to methods like finite mixture models
(Jedidi, Jagpal, & DeSarbo, 1997; Lubke & Muthén, 2005;
Muthén & Shedden, 1999). Second, IPC regression is

a data-driven or exploratory procedure and therefore sus-
ceptible to capitalize on chance characteristics of the data
(MacCallum, Roznowski, & Necowitz, 1992). Modifying
models by blindly following the advice of IPC regression
may lead to a model that works well in the observed sample
but does not generalize to others. We thus recommend
paying not only close attention to the p-value provided by
IPC regression, but also to the size of the estimated indivi-
dual or group difference. See also Saris, Satorra, and van
der Veld (2009), for a related discussion about model mod-
ification using the modification index and expected para-
meter change. Third, using IPC regression to investigate the
effect of a large number of covariates on complex models
with many parameters will yield a large number of IPC
regression estimates that can be challenging to interpret.
Regularization techniques such as lasso (Tibshirani, 1996)
could be used to find a subset of the most important
covariates.

In summary, however, we believe that IPC regression is
a useful tool to investigate parameter heterogeneity in
SEMs for longitudinal data such as dynamic panel models
that combines flexibility with its unique computational
simplicity.
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APPENDIX
EXPRESSING IPC REGRESSION ESTIMATES

WITH GROUP-SPECIFIC ESTIMATES

In the following, we express the IPC regression estimates bγ0 and bγ1 in

terms of the group-specific maximum likelihood estimates bλ1 and bλ2 as
shown in Equations (26) and (27). Note that bγ0 and bγ1 are simple ordinary

least squares estimates given by bγ1 ¼ sIPC;z=s2z and bγ0 ¼ IPC�bγ1�z, where
sIPC;z is the sample covariance between the IPCs and the covariate zi, s2z is
the sample variance of the covariate, and IPC and �z are the sample means
of the IPCs and the covariate, respectively.

Following Equation (16), the IPC of individual i is given by

IPCðbλ; yiÞ ¼ bλþ IðbλÞ�1Sðbλ; yiÞ ¼ bλþ bλ2 1bλ � yi

	 

¼ 2bλ� bλ2yi:

Next, we express the pooled maximum likelihood estimate bλ as a function of
the group-specific maximum likelihood estimates:

bλ ¼ 1

n

Xn
i¼1

yi

 !�1

¼ 1

n
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Xn1
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Using both equations from above, the IPC regression slope bγ1 can be
written in terms of the group-specific maximum likelihood estimates:

bγ1 ¼ sIPC;z
s2z
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Finally, we can derive the IPC regression intercept bγ0 in the same way
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